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Abstract 

In this paper, a GIS-based methodology has been used to produce a landslide 

susceptibility map. The area selected is along the E-W highway in Malaysia where 

frequent landslides occur. The susceptibility mapping was based on a multivariate 

statistical method namely the logistic regression. The spatial database for factors that 

influence landslide occurrence  were prepared from different sources including 

topographical maps, geological maps, satellite data, hydrological data, soil data and 

field data. Ten prepared thematic maps of factors were: slope gradient, slope aspect, 

elevation, curvature, and distance from road, drainage density, lithology, lineament 

density, soil, and rainfall.  All maps were subdivided into different classes by its 

value or feature and then were converted to raster format in the ArcGIS 9.3, each 

representing an independent layer of causative factor in the constructed spatial 

database. the contribution of each factor  towards  landslide  susceptibility  was  

evaluated  using  the  logistic  regression model  .The  Wald  test  in  logistic  

regression  analysis  suggests  that slope gradient, lineament density, rainfall, 

distance from road and lithology play a positive important  role  in  the  landslide  

susceptibility.  However,  the  curvature  and  drainage density factors  play  a  

negative  important  role  in  the  landslide  susceptibility in  the study  area. The 

results of the analysis have been validated by calculating the AUC of the prediction 

rate curve which shows an accuracy of 80.97%, indicating a high quality 

susceptibility map obtained from the logistic regression model. The map could be 

used by decision makers as basic information for slope management and land use 

planning  

INTRODUCTION  

Landslides are among the most costly and damaging natural hazards in the 

mountainous terrains of tropical and subtropical environments, which cause 

frequently extensive damage to property and occasionally result in loss of life. Over 

the last two decades, many governments and international research institutes in the 

world have investigated considerable resources in assessing landslide hazards and 

construct maps portraying their spatial distribution (Guzetti et al., 1999). These maps 

describe areas where landslides are likely to occur in the future and classify those 

areas into different susceptibility zones from very low to very high susceptible zones 

according to their susceptibility to landslides. Such as landslide susceptibility maps 
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are useful for planners and developers to choose favorable locations for future 

developments. 

The Geographical Information Systems (GIS), enables data acquisition, 

storage, retrieval, modeling and manipulation. The GIS systems have the 

capability to incorporate various geographical technologies including remote 

sensing and global positioning systems hence they have become very vital for 

landslide susceptibility mapping. The analytical and combinational capacity of 

GIS has enabled the production of techniques used in landslide assessment for 

generating more precise maps, detailing the probable landslide hazard prone areas.  

Landslide susceptibility mapping can vary from simple methods that use a 

minimum data to sophisticated mathematical methods that use practical 

mathematical methods using complex databases in computer-based geographic 

information system (GIS). For assessing landslide hazard different methodologies are 

proposed which are mainly grouped as: qualitative and quantitative methods. Both 

qualitative and quantitative approaches are based on the principle that future 

landslides are more likely to occur under the same conditions that led to past slope 

instability. In qualitative methods, the factors leading to landslides are ranked and 

weighted according to their expected importance in causing slope failure based on 

an earth scientist’s experience. These methods are often useful for regional 

assessments (Aleotti and Chowdhury, 1999; van Westen et al., 2003).To overcome 

the subjectivity of qualitative methods, many statistical approaches have been 

developed and employed to become a major topic of research in landslides 

susceptibility studies during the last decade. In statistical analysis methods weighting 

values are computed based on the mathematical relationship between existing 

landslide distribution and their controlling factors. 

In this study the logistic regression model, which is a multivariate statistical 

model was used to produce a landslide susceptibility map for an area located at the 

central northern part of Peninsular Malaysia along the E-W highway (Gerik – Jeli). 

The study area is frequently subjected to landslides following heavy rains, especially 

alongside the highway since it was constructed 

Study Area 

The  study  area  lies  in  the  central  northern  part  of  Peninsular  Malaysia  

along  the  E-W highway  between  5°:24":6'  N  to  5°:45":56.5'  N  latitude  and  

101°:7":53.6'  E  to  101°:50":26'  E   longitude, with a total area of 1205 km² (Fig. 

1). It is characterized by rugged hills and mountain terrains covered by forest. The 

study area is frequently subjected to landslides following heavy rains, especially 

alongside the highway since it was constructed. The common types of landslides 

identified in the area were soil slides, soil slumps, rock falls, rock plane failure, 

wedge failure, toppling, and erosion failure.  
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Fig. 1: Location of the study area shown with the TIN map 

MATERIAL & METHOD 

Data collection and database construction 

The study method was applied in four main steps: data collection, 

construction of geospatial database, logistic regression model analysis, and 

validation of the results. In this study a landslide location map and thematic maps of 

the various causative factors were prepared in ArcGIS 9.3 software. The landslide 

location map was prepared based on interpretation of the aerial photographs, 

literature review and field work. Data layers of considered factors were obtained 

from different sources such as topographical maps, geological maps, satellite data, 

hydrological data, soil data and field data. Ten prepared thematic layers of factors 

were: slope gradient, slope aspect, elevation, Curvature, distance from road, drainage 

density, lithology, lineament density, soil, and rainfall.  

Digital Elevation Model and Its derivatives 

Digitized contour and survey base points from the 1:50,000-scale topographic maps 

were extracted and processed to generate a 20 m DEM using the TIN module of 3D 

Analyst tool extension on ArcGIS 9.3. Using this DEM, the slope angle map, slope 

aspect map, curvature map and elevation map were automatically derived. Slopes in 

the area were found to be vary from 0° to 87° and they were classified into 5 classes, 

slope aspect map was classified to 9 classes (fig. 3), the elevation in the studied area 

was found to range from 0 to 1268 m and it was classified into six classes. 

 Lineaments map 

In this study, the band 4 (0.75 -0.90µm) of Landsat 7 ETM+ image was used to 

delineate lineaments because it has the ability to reflect the best contrast between 

lineaments and the surroundings in tropic areas where most of the rocks are covered 
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by vegetation. Lineaments were traced from visual interpretation of band 4 of 

Landsat 7 ETM+ image, and from filtered images obtained from four directional 

sobel filters (Fig 2) which applied on the band 4 of Landsat 7 ETM+ image. The 

produced lineaments map was then used to compute lineaments density map. 

N-S NE-SW E-W NW-SE 

-1 0 1 -2 -1 0 -1 -2 -1 0 1 2 

-2 0 2 -1 0 1 0 0 0 -1 0 1 

-1 0 1 0 1 2 1 2 1 -2 -1 0 

Figure 2.  3 by 3 Sobel kernel directional filters in four principle directions 

The lineaments density for each 20- by 20-m cell was computed using the line 

density analyst extension on ArcGIS 9.3, and classified into five equal classes: very 

low (<0.5 km/km²), low (0.5 to 1 km/km²), moderate (1 to 1.5 km/km²), high (1.5 to 

2 km/km²), and very high (> 2 km/km²), density.  Distance to lineaments map was 

also generated from the lineaments map using the straight line distance of spatial 

analyst extension tool on ArcGIS 9.3 and classified to five classes. 

Lithology map 

From the lithological point of view, 10 units were digitized from six geological maps 

(scale 1:63,360) covering the area. These units are described in Table 1. 

Table 1. Lithological units  

Lithological unit Description 

LU1 Granite 

LU2  Metagreywacke and metasandstone 

LU3  Quartz-chlorite schist, sericite schist, graphitic schist and 

phyllite 

LU4 Quartz-mica schist, quartz-graphite schist, and minor 

amphibole 

LU5  Metatuff of rhyolitic composition 

LU6 Chert, shale, slate and metasiltstone 

LU7  Metarenite 

LU8  Phyllite and slate 

LU9  Marble with calcereous matesediments 

LU10 Granite, granodiorite and syenite 

  

Drainage map 

The drainage map was digitized from the topographic maps of scale 1:50.000. Then 

the drainage density map was computed considering a 20- by 20-m cell and classified 
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into five equal intervals  classes (fig. 3): very low (<0.876 km/km²), low (<0.876 -

1.752 km/km²), moderate (1.752 to 2.629 km/km²), high (2.629 to 3.505 

km/km²),and very high (>3.505 km/km²).    

Rainfall map 

Annual rainfall data for the years 2000, 2005 and 2009 were collected from three 

meteorological stations and then they were used to produce a rainfall map using an 

interpolation method. The area was classified to four rainfall zones which were (fig. 

3):  (<2000 mm/yr, 2000-2500 mm/yr, 2500-3000 mm/yr, and >3000 mm/yr).The 

maximum rain fall in the area is 3970 mm/yr and mostly occurs in the east. On the 

other hand, the lowest rainfall is 1590 mm/yr and occurs to the western part of the 

area. 

Road distance map 

The road distance map was digitized  from the topographic map and then classified 

to seven distance buffer classes (fig. 3) (0 -50 m ,50 - 100 m ,100 - 150 m,150 - 

200m, 200m - 250m, 250-300 m, and >300m) calculated on both sides of the roads. 

Soil map 

A soil map was prepared using 32 soil samples collected in the field from residual 

soils formed by weathering processes on the rocks. In this study the soil were 

classified according to the unified soil classification system (USCS). The grain size 

distribution of gravel and sand particles were measured using the sieve analysis. 

Fine-grained soils, which could be silts or clays, cannot be measured using the sieves 

therefore they were classified according to their Atterberg limits. The liquid limit 

(LL), plastic limit (PL) and plasticity index (PI) values of fine-grained soils were 

determined from laboratory analysis. The values of plasticity index and liquid limit 

are plotted on a plasticity chart, and the fine-grained soils were classified according 

to its plotting region on the chart. The two types of soil were identified were SILT-

sandy and SAND-silty (fig. 3).   

Landslides location map 

Landslides location map was prepared based on interpretation of the aerial 

photographs, the previous studies conducted on the area (Abdul Ghani Rafek et al., 

1989) and the collected historical information on landslides occurrences. In addition, 

field work has been carried out to map the recent landslides. A total of 143 landslides 

were mapped in the area. The common types of landslides identified in the area were 

rock slumps, rock falls, wedge slides, topplings, soil slides and soil slumps. 

 

http://en.wikipedia.org/wiki/Plasticity_index
http://en.wikipedia.org/wiki/Liquid_limit
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Figure 3 Landslide factors maps 
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Landslide susceptibility mapping using the logistic regression model 

a. Sampling  

The spatial relationship between landside and landslide influencing parameters was 

evaluated using the logistic regression method. Three different datasets were selected 

and the logistic regression model was run with each dataset by SPSS (2010) software 

package. These training sets were then evaluated using a chi-square of Hosmer-

Lemeshow test, Cox and Snell R2 and Nagelkerke R2. In addition, the accuracy 

percentages of classification for the three training sets were calculated. Table 2 

shows the statistics used to evaluate the three datasets. As stated by Ayalew & 

Yamagishi (2005), the chi-square value is considered as the key element in standard 

analysis of the test as it shows the significant test for logistic regression. The chi-

square value in sample one is fairly higher than that of the others and it can be 

concluded that the causal factors have a sufficient influence on the landslide 

occurrences. Moreover, sample one shows higher values for the R2 value of Cox & 

Snell and Nagelkerke. The higher R2 indicates the extent to which the model fits the 

data. R2 value prior to 1 means that the model fits the data perfectly, whereas 0 

indicates there is no relationship with the data (Ayalew & Yamagishi 2005). 

However, when the R2 is greater than 0.2, this is an evidence of relatively goodness 

of fit (Clark & Hosking 1986). The final step was concerned with comparing the 

accuracy percentages of classification for the three training sets. Based on this 

comparison, it was revealed that the first sampling dataset gained the highest overall 

accuracy, so it was selected to be used in the logistic regression analysis. 

Table 2      Summary statistics for the three samples datasets 

Training set 

no. 

 

-2ln Log 

likelihood 

 

Cox and 

Snell 

pseudo R2 

Nagelkerke 

Pseudo R2 

 

Chi-

square 

 

Overall 

accuracy 

% 

1 131.379 0.605 0.807 267.874 88.9 

2 184.108 0.526 0.702 215.145 85.8 

3 251.611 0.401 0.535 147.641 78.5 

b. Forward stepwise and checking the fitness of the models 

The logistic regression model of dataset number one was constructed to analyze the 

data representing the ten independent factors by using the forward stepwise logistic 

regression method. The null hypothesis used to test is that the coefficient of the 

independent variable (b) is 0. The statistical test used is the Wald chi-square value 

(χ2) at 5% significance level interval for the corresponding degree of freedom (df):  

χ2 =(b/SE)2        
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where, S.E. is the standard error and is given as SE = s/n, where s is the standard 

deviation of the input data samples and n is the number of pixels in the input data.  

Thus, the variables with estimated coefficients having a significance value (Sig.) of 

less than 0.05 are found to be significant, or in other words, these are accepted as 

influential independent variables. Application of the forward stepwise method 

usually begins with a model which does not involve any independent variables, and 

then, the following steps are concerned with determining the variables with a 

significance value less than 0.05 as significant and adding it to the model while at 

the same time rejecting all other variables with a significance value greater than 0.05 

because such variables do not significantly affect the outcome of the dependent 

variable. The model summary of the stepwise is shown in Table 3. 

Table 3     Model Summary statistics of the forward stepwise for sample no.1 

Step -2 Log 

likelihood 

Cox & Snell R 

Square 

Nagelkerke R 

Square 

Chi-

square 

Accuracy 

(%) 

1 235.643 0.433 0.578 163.610 83 

2 209.750 0.482 0.643 189.503 81.9 

3 191.451 0.514 0.685 207.801 86.8 

4 175.055 0.541 0.721 224.198 85.1 

5 160.797 0.563 0.751 238.456 85.8 

6 153.218 0.574 0.766 246.034 86.1 

7 143.702 0.588 0.784 255.551 87.5 

8 138.422 0.596 0.794 260.830 88.5 

9 132.627 0.605 0.807 267.874 88.9 

As shown in Table 3, the extent to which the final model improves over the null 

model is measured by the difference in the -2 log likelihood (-2LL) values in the nine 

steps. Generally, the lower the value of -2LL of the model is, the better is the fitness 

of the model to the data. In the case of the present study, there was a decrease in the 

-2LL value from 235.643 at the first step to 132.627 at the final step. Moreover, the 

usefulness of the model was measured by using the Cox & Snell’s and Nagelkerke’s 

R2. A higher R2 value of Cox & Snell and Nagelkerke is an indicative of a better 

model. Thus, it was found that the most significant model was achieved in the final 

iteration step (9) with an overall calibration accuracy of 88.9 % as shown in Table 4. 
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Table Error! No text of specified style in document. Classification table of training 

dataset for Logistic regression base                       model 

 Observed Predicted 

 

LANDSLID Percentage 

Correct 0.00 1.00 

Step 1 LANDSLID 0.00 111 32 77.6 

 1.00 17 126 88.1 

Overall Percentage   82.9 

Step 2 LANDSLID .00 116 27 81.1 

1.00 25 118 82.5 

Overall Percentage   81.8 

Step 3 LANDSLID .00 114 29 79.7 

1.00 10 133 93.0 

Overall Percentage   86.4 

Step 4 LANDSLID 0.00 115 28 80.4 

1.00 15 128 89.5 

Overall Percentage   85.0 

Step 5 LANDSLID 0.00 119 24 83.2 

1.00 17 126 88.1 

Overall Percentage   85.7 

Step 6 LANDSLID 0.00 121 22 84.6 

1.00 18 125 87.4 

Overall Percentage   86.0 

Step 7 LANDSLID 0.00 122 21 85.3 

1.00 15 128 89.5 

Overall Percentage   87.4 

Step 8 LANDSLID 0.00 124 19 86.7 

1.00 16 127 88.8 

Overall Percentage   87.8 

Step 9 LANDSLID 0.00 125 18 87.4 

1.00 14 129 90.2 

Overall Percentage   88.9 

c. Test of single variables 

For estimating the significance of the coefficients for each single variable, it was 

tested with the Wald test. To obtain this, the maximum likelihood estimate of every 

variable was compared with its estimated standard error (Hosmer & Lemeshow 

1989; Van Den Eeckhaut et al. 2006). Thus, a coefficient is considered significant if 

the “null hypothesis estimating that coefficient is 0” and can be rejected at a 0.05 

significance level. According to their different levels of influence on the landslide 

occurrence, different variables have different coefficient values. The regression 

coefficients for the variables retained from the final model are given in Table 5. 
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Furthermore, determination of the effect of that variable on the probability of 

landslide occurrence can be done by examining the sign of a dependent variable’s 

coefficient estimate. The positive coefficient means those classes are positively 

responsible for the landslide occurrence and the negative coefficient means that they 

negatively influence the landslide. Table 5 indicates that the coefficients of slope, 

lineament, rainfall, road factors and the lithology units LU1, LU2, LU6, LU7 and 

LU8 which are composed of granite, metagreywacke and metasandstone, chert, 

shale, slate and metasiltstone, metarenite and phyllite and slate respectively are very 

significant and positive in the logistic regression; hence, they play a positive 

important role in the landslide susceptibility. However, the coefficients of the 

curvature, drainage factors are significant but negative, so this will reduce the 

landslide susceptibility. In other words, these factors play a negative important role 

in landsliding in the study area. Lithology units LU3, LU4, LU5, LU9 which are 

composed of quartz-chlorite schist, sericite schist, graphitic schist and phyllite, 

quartz-mica schist, quartz-graphite schist, and minor amphibole, metatuff of rhyolitic 

composition respectively and soil units S1and S2 which are composed of silty sand 

and clayey silt are not significant for landsliding in the study area based on the model, 

and, hence, are less important for the prediction of landsliding. 

Table 5  The regression coefficients estimated for retained independent variables                       

in the logistic regression model 

Variable B S.E. Wald Sig. 

Slope 0.053 0.026 4.050 0.044 

Curvature -1.006 0.480 4.395 0.036 

Lineament 1.020 0.504 4.098 0.043 

Drainage -1.037 0.357 8.410 0.004 

Rainfall 0.003 0.001 9.968 0.002 

Road 0.0003 0.000 7.747 0.005 

Soil   5.203 0.074 

Soil (1) -16.507 4214.780 0.000 0.997 

Soil (2) -17.879 4214.780 0.000 0.997 

Lithology   26.531 0.002 

LU(1) 3.670 1.285 8.156 0.004 

LU(2) 0.387 1.112 0.121 0.728 

LU(3) -31.001 7451.488 0.000 0.997 

LU(4) -6.062 3.340 3.295 0.070 

LU(5) -32.615 6907.712 0.000 0.996 

LU(6) 2.685 1.627 2.722 0.099 

LU(7) 3.668 1.544 5.647 0.017 

LU(8) 5.369 1.792 8.980 0.003 

LU(9) -20.244 25797.138 0.000 0.999 

Constant 9.006 4214.782 0.000 0.998 

B: Coefficients for each class                         S.E.: Standard Error of estimate values 

Wald: Wald chi-square value                               Sig.: Significance of the value 
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d. Landslide probability and susceptibility map 

The logistic regression yields the intercept of the model and the coefficients values 

for all retained variables from the final step of the logistic regression analysis model. 

These coefficients values were then transferred into Arc Map in ArcGIS 9.3 to be 

assigned as weights for the individual independent variables. Using all these 

coefficients and intercept value, the predicted probability (landslide susceptibility 

index LSI) for the area was calculated using the following equation:  

P (landslide susceptibility index) = 1/1 + exp [9.006 + (0.053* Slope) + (-1.006* Curvature) + (1.020* 

Lineament) + ( -1.037* Drainage) + (0.003* Rainfall) + (-0.0003* Road) +  (Soilc) + (0.098* 

Foliation) + Lithologyc                            

where, P (landslide susceptibility index) is the landslide-occurrence possibility, 

Slope is the slope value, Curvature is curvature value, Lineament is lineament 

density value, Drainage is the drainage density value, Rainfall is the rainfall 

precipitation value, Road is distance from road value, LithologyC and Soilc are 

logistic multiple regression coefficients for the lithologic units and soil units as listed 

in Table 5. The calculated P (landslide susceptibility index LSI) , probability values 

of the entire study area lie in the range of 0 to 0.99 which were considered as 

predicted probabilities of landslide in a pixel in the presence of the independent 

variables considered in the model. The pixels which have a value of probability being 

higher than (0.5) are more subject or susceptible to slope failure. Finally, the 

predicted probability values were categorized into five landslide-susceptible zones 

based on the success rate curve method. The LSZ map, thus, produced is given in 

Figure 4. The statistical calculation of the areas and percentages of landslide 

susceptibility zones in the study area are listed in Table 6. The percentages of 

landslide susceptibility classes and the landslide occurrence in each class are shown 

in Fig.5. 

 
Figure 4      The landslide susceptibility map of the study area based on logistic 

regression method 
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Table 6 Area of different landslide susceptibility zones obtained with the                      

logistic regression method 

Landslide susceptibility zones Area 

 (Km2) (%) 

Very low landslide susceptibility 447.83 37.25 

Low landslide susceptibility 263.62 21.93 

Moderate landslide susceptibility 213.76 17.78 

High landslide susceptibility 135.64 11.28 

Very high landslide susceptibility 141.59 11.78 

 

 

Figure 5     Histograms showing the percentages distribution of landslide 

susceptibility classes with the percentages landslide occurrence in each class 

Verification of the model 

To verify the results, the landslide susceptibility index, which indicates calculated 

probability values of the entire study area was compared with known landslides. The 

LSI was assessed in terms of its predictive power validity by calculating the 

prediction rate curve. To produce the prediction rate curve, the computed index 

values of all cells in the targeted area were arranged in descending order, and divided 

into 100 equal classes ranging from very highly susceptible classes to non-

susceptible classes. Then the 100 classes were overlaid and intersected with known 

landslides to establish the percentage of landslide incidences in each susceptible 

class. Fig. 6 illustrates the prediction rate curve as a line graph. The Fig. 6 also 

indicates the satisfactory results, highest susceptibility pixels that envelop 10% of 

the study area includes 50% of known landslides , while the 20% high susceptible 

area covers more than 65% of landslides. Later, the prediction of the map was 

validated more precisely using the area under the curve (AUC) by ascertaining that 

the ideal prediction will have highest AUC of 1. In our study, the AUC was found to 

be 0.8097. Consequently, it indicates that the prediction precision of the acquired 
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map is 80.97% with respect to the ideal value of 100%, which is comparatively 

satisfied. 

 

Figure 6 Cumulative      frequency      diagram      showing percentage of study 

area classified as susceptible (x-axis)   in   cumulative   percent   of   

landslide occurrence (y-axis). 

Conclusion 

This work has provided a landslide susceptibility assessment using logistic 

regression model with the aid of GIS for a landslide prone area located in central 

northern Malaysia. This model is cost effective and capable of quickly contributing 

to the landslide assessment by manipulating data and performing the essential 

analysis. In order to accomplish this purpose ten landslide control factors were 

employed in the analysis which includes: slope gradient, slope aspect, elevation, 

Curvature, distance from road, drainage density, lithology, lineament density, soil, 

and rainfall. A logistic regression analysis was implemented in order to obtain the 

weights for every factor and class using direct pairwise comparison, later based on 

these weights, thematic maps of factors were combined by weighted overly 

techniques and the landslide susceptibility map of the study area was created. The 

obtained map was classified into five susceptibility classes which specified that the 

high and very high susceptible zones include about 23.06% of the total area, while 

about 29.18 % were classified as low and very low susceptible zones and 17.78 % is 

moderately susceptible zone. At the end, the map was validated with known 

landslides data based on the area under curve (AUC) method, by which the prediction 

precision of 80.97% was established. 
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